## Solutions to the Olympiad Hamilton Paper

H1. No digit of the positive integer $N$ is prime. However, all the single-digit primes divide $N$ exactly.

What is the smallest such integer $N$ ?

## Solution

The single-digit primes are 2, 3, 5 and 7. Each of them divides $N$, so that $2 \times 3 \times 5 \times 7$ divides $N$. Written another way, this means that $N$ is a multiple of $2 \times 3 \times 5 \times 7=210$.

But one of the digits of 210 is the prime 2 , so $N$ is not 210 , and one of the digits of $2 \times 210=420$ is also 2, so $N$ is not 420 either. Furthermore, one of the digits of $3 \times 210=630$ is the prime 3 , so $N$ is not 630 . However, none of the digits of $4 \times 210=840$ is a prime, so $N$ can be 840 .

We have ruled out all the smaller options, therefore the smallest possible integer $N$ is 840 .

H2. The diagram shows two arcs. Arc $A B$ is one eighth of a circle with centre $C$, and arc $A C$ is one quarter of a circle with centre $D$. The points $A$ and $B$ are joined by straight lines to $C$, and $A$ and $C$ are joined by straight lines to $D$.

Prove that the area of the shaded triangle $T$ is equal to the area of the shaded region $R$.


## Solution

Let the radius $D A$ be $r$, so that $D C$ also equals $r$. Since arc $A C$ is one quarter of a circle, angle $\angle C D A$ is $90^{\circ}$. Hence, using Pythagoras' Theorem in the triangle $A C D$, we obtain $C A^{2}=2 r^{2}$.
Now consider the segment $S$ bounded by the arc $A C$ and the chord $A C$, shown shaded in the following diagram.


We shall combine this region with each of $R$ and $T$-if the areas of the combined regions are equal, then the areas of $R$ and $T$ are equal.
The region obtained by combining $R$ and $S$ is one eighth of a circle with centre $C$ and radius $C A$. Thus its area is

$$
\begin{aligned}
\frac{1}{8} \times \pi \times C A^{2} & =\frac{1}{8} \times \pi \times 2 r^{2} \\
& =\frac{1}{4} \pi r^{2} .
\end{aligned}
$$

The region obtained by combining Sand Tis one quarter of a circle with centre Dand radius $D A$. Thus its area is $\frac{1}{4} \pi r^{2}$.
Hence the areas of the regions obtained by combining $S$ with each of $T$ and $R$ are equal. Therefore the area of $T$ is equal to the area of $R$.

H3. Alex is given $£ 1$ by his grandfather and decides:
(i) to spend at least one third of the $£ 1$ on toffees at 5 p each;
(ii) to spend at least one quarter of the $£ 1$ on packs of bubblegum at 3 p each; and
(iii) to spend at least one tenth of the $£ 1$ on jellybeans at 2 p each.

He only decides how to spend the rest of the money when he gets to the shop, but he spends all of the $£ 1$ on toffees, packs of bubblegum and jellybeans.

What are the possibilities for the number of jellybeans that he buys?

## Solution

It follows from decision (i) that Alex spends at least 35 p on toffees; it follows from decision (ii) that he spends at least 27 p on bubblegum; and it follows from decision (iii) that he spends at least 10 p on jellybeans. Therefore, out of the total $£ 1$ that he will spend, he has to decide how to spend 28p.
He may spend the whole 28 p on jellybeans, which is an extra 14 jellybeans.
He cannot spend 26 p or 24 p on jellybeans, because he cannot spend the remaining money ( 2 p or 4 p ) on the other items.
But he may spend any even amount from 22p downwards on jellybeans, since the remaining money would then be an even amount from $6 p$ to 28 p, and he is able to spend this on toffees or bubblegum (or both), as the following table shows.

| Remaining <br> money | Toffees <br> at 5 p | Bubblegum <br> at 3 p |
| :---: | :---: | :---: |
| 6 p | 0 | 2 |
| 8 p | 1 | 1 |
| 10 p | 2 | 0 |
| 12 p | 0 | 4 |
| 14 p | 1 | 3 |
| 16 p | 2 | 2 |
| 18 p | 0 | 6 |
| 20 p | 1 | 5 |
| 22 p | 2 | 4 |
| 24 p | 0 | 8 |
| 26 p | 1 | 7 |
| 28 p | 2 | 6 |

Note that in some cases there are other ways to spend the money.
Thus the number of additional jellybeans that he may buy is a number from 0 to 11 , or is 14 .
But these are in addition to the five he buys as a result of decision (iii). Therefore the number of jellybeans that he buys is a number from 5 to 16 , or is 19 .

H4. The diagram shows a right-angled triangle $A C D$ with a point $B$ on the side $A C$.

The sides of triangle $A B D$ have lengths 3,7 and 8 , as shown.

What is the area of triangle $B C D$ ?


## Solution

Let $B C$ equal $b$ and $C D$ equal $h$, as shown in the following diagram.


Using Pythagoras' Theorem in both the triangle $B C D$ and the triangle $A C D$, we get the two equations

$$
\begin{align*}
b^{2}+h^{2} & =7^{2}  \tag{1}\\
\text { and } \quad(b+3)^{2}+h^{2} & =8^{2} . \tag{2}
\end{align*}
$$

Subtracting equation (1) from equation (2), we obtain

$$
(b+3)^{2}-b^{2}=8^{2}-7^{2}
$$

Factorising the difference of two squares, we get

$$
(b+3-b)(b+3+b)=(8-7)(8+7)
$$

so that

$$
3(2 b+3)=15
$$

Therefore

$$
b=1 .
$$

Using equation (1), we now obtain $1+h^{2}=7^{2}$, and so $h=\sqrt{48}=4 \sqrt{3}$.
Therefore the area of the triangle $B C D$ is $\frac{1}{2} \times 1 \times 4 \sqrt{3}$, that is, $2 \sqrt{3}$.

H5. James chooses five different positive integers, each at most eight, so that their mean is equal to their median.

In how many different ways can he do this?

## Solution

Since there are five different positive integers, the middle one is at least 3 . But the five numbers are at most 8 , so the middle one is at most 6 .

However, the middle value is the median of the numbers, which we are told is equal to the mean. Let the integers, in increasing order, be $a, b, c, d$ and $e$. Thus $c$ is the median and therefore the mean.

Because $c$ is the mean, $a+b+c+d+e=5 c$, and thus $(a+b)+(d+e)=4 c$. We know that $d+e$ is at most $7+8=15$, so that $a+b$ is at least $4 c-15$; also, $a+b$ is at most $(c-2)+(c-1)=2 c-3$.

For each value of $c$, we first list the possible values of $a+b$. From $a+b$ we find $d+e$.

Finally, we list the possible values of $a, b, d$ and $e$, using $0<a<b<c<d<e$. The following table shows the results.

| $c$ | $a+b$ | $d+e$ | $a$ | $b$ | $d$ | $e$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 3 | 9 | 1 | 2 | 4 | 5 |
| 4 | 3 | 13 | 1 | 2 | 5 | 8 |
|  |  |  | 1 | 2 | 6 | 7 |
|  | 4 | 12 | 1 | 3 | 5 | 7 |
|  | 5 | 11 | 2 | 3 | 5 | 6 |
| 5 | 5 | 15 | 1 | 4 | 7 | 8 |
|  |  |  | 2 | 3 | 7 | 8 |
|  | 6 | 14 | 2 | 4 | 6 | 8 |
|  | 7 | 13 | 3 | 4 | 6 | 7 |
| 6 | 9 | 15 | 4 | 5 | 7 | 8 |

So altogether there are 10 ways for James to choose the integers.

H6. Tony multiplies together at least two consecutive positive integers. He obtains the sixdigit number $N$. The left-hand digits of $N$ are ' 47 ', and the right-hand digits of $N$ are ' 74 '.

What integers does Tony multiply together?

## Solution

An integer is divisible by 4 when the number formed from the rightmost two digits is a multiple of 4 , and not otherwise. But 74 is not a multiple of 4 , so $N$ is not divisible by 4 .

However, when two even numbers are multiplied together, the result is a multiple of 4. We conclude that Tony's list of consecutive integers does not include two even numbers.

There are two possibilities: either he has multiplied three consecutive integers 'odd', 'even', 'odd'; or he has multiplied two consecutive integers. But when two consecutive integers are multiplied together the last digit is never 4-the only options for the last digits are $0 \times 1,1 \times 2.2 \times 3,3 \times 4,4 \times 5,5 \times 6,6 \times 7,7 \times 8,8 \times 9,9 \times 0$, so the result ends in $0,2,6,2,0,0,2,6,2$ or 0 .

We are therefore trying to find an odd integer $n$ such that $n \times(n+1) \times(n+2)=$ ' $47 \ldots 74$ '. We also know that $n+1$ is not a multiple of 4 .

Now $81 \times 82 \times 83$ fails because it ends in 6 . It is also too big, since it is bigger than $80 \times 80 \times 80=512000$.

Also $73 \times 74 \times 75$ fails because it ends in 0 . It is also too small, since it is smaller than $75 \times 75 \times 75=421875$.

The only remaining possibility is $77 \times 78 \times 79=474474$, which works.

